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A B S T R A C T   

The conventional heating, ventilation, and air conditioning (HVAC) systems are based on a set-point control 
approach that only considers the temperature of the environment without reflecting the thermophysiological 
status of the occupant. This approach not only fails to fully satisfy individual thermal preferences, but it also 
makes an HVAC operation energy-inefficient. One possible solution is to control the indoor thermal condition 
based on an accurate prediction of the occupant’s thermal comfort to prevent any unnecessary energy con
sumption. Here, we present an artificial intelligence (AI) wearable sensor-based human-in-the-loop HVAC control 
system that is operated on a real-time basis reflecting the thermophysiological condition of the occupant to 
automatically improve their thermal comfort while reducing the energy consumption of the building. The 
wristband-type, AI-based, three-point wearable temperature sensor offers excellent thermal comfort prediction 
accuracy (93.9%), enabling a human-centric HVAC control operation. A proof-of-concept demonstration of 
closed human-in-the-loop HVAC control using the AI-enabled wearable sensor system confirms both the accuracy 
of the thermal comfort prediction and the energy-efficiency of this approach, demonstrating its potential as a 
new solution that improves the occupant’s thermal comfort and provides building energy savings.   

1. Introduction 

The continuous increase in energy consumption worldwide, with 
estimated growth of about 50% by 2050, is a serious problem as it re
quires burning of more fossil fuels which accounts for two-thirds of 
greenhouse gas emissions (Damassa, 2014; van Ruijven et al., 2019). 
The structural building energy demand constitutes 35% of the total 
global energy demand, and heating, ventilation, and air conditioning 
(HVAC) systems are one of the major contributors to this, accounting for 
about 50% of the total energy demand in buildings (Nalley and LaRose, 
2021). Existing HVAC systems use a set-point control method with in
door temperature sensors to control the thermal environment of the area 
for human comfort. However, this approach is not optimal since it only 
considers the temperature of the environment and does not include the 

individual’s preferences for the thermal environment. This not only can 
increase the power consumption but also can reduce the thermal com
fort of the occupants (Han et al., 2019; Hu et al., 2020; Peng and Cui, 
2020). Previous reports pointed out a direct relationship of thermal 
comfort of the occupants to their productivity (Akimoto et al., 2010; 
Collinge et al., 2014), indicating the importance of thermal comfort of 
workers in office buildings. 

Recent thermal comfort prediction technologies based on artificial 
intelligence (AI) have been shown to improve thermal comfort, with 
potential application for building energy savings as well. Prediction 
approaches, such as supervised learning with various regression and 
classification models (Cosma and Simha, 2019; Katić et al., 2020; Mor
resi et al., 2021), as well as reinforcement learning (Gao et al., 2020; 
Valladares et al., 2019), have been conducted to achieve optimal 
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thermal comfort control. However, these studies have not yet been 
verified in a closed human-in-the-loop (HIL) with an HVAC control 
system. Previous alternative control simulations based on the dataset of 
the American Society of Heating, Refrigerating and Air-Conditioning 
Engineers (ASHRAE RP-884), which is composed of thermal comfort 
field experiments carried out worldwide (21,000 samples from 160 
buildings), were evaluated in terms of their performance in an inte
grated HIL-HVAC control system, but the physiological data (e.g., skin 
temperature, sweat rate), which play a major role in thermoregulation 
(Fang et al., 2021), were not included in the data training (Gao et al., 
2020; Kramer et al., 2021). A recent field study (Li et al., 2021) utilized 
physiological sensing technologies (e.g., skin temperature, heart rate, 
etc.) using a commercial wristband for thermal comfort prediction and 
optimal control of an HVAC system. A linear-regression-model-based 
method was used in the study to update the thermal sensation predic
tion model in real time. Nonetheless, commercial wristband sensors 
have limited thermal comfort prediction accuracies, as they do not allow 
variation of different numbers and locations of skin temperature 
measurements. 

In this work, we introduce an AI-enabled HIL-HVAC wearable sensor 
control system with real-time, thermophysiological condition- 
dependent operation, which can automatically enhance the thermal 
comfort of the occupant with potential to reduce the energy consump
tion of the building. Among the various physiological measures that are 
typically used in predicting human thermal comfort (e.g., sweat rate 
(Sim et al., 2018), blood pressure (Charkoudian, 2003), skin tempera
ture (Choi and Loftness, 2012)), we adopted the skin temperature as a 
key physiological measure, owing to its important role in thermal 
transfer according to thermal comfort theory (Romanovsky, 2014), as 
well as the ease of reducing the overall dimensions of devices operated 
with thermal sensors (Mansi et al., 2021). Here, we developed a soft 
wearable sensor, which offers a real-time, three-point wrist skin tem
perature measurement that has potential to improve the prediction ac
curacy of the thermal comfort as compared with a single-point 
measurement (Sim et al., 2016). Using the three-point temperature 
measurement, our optimal thermal comfort prediction model shows 
93.9% accuracy, as compared with the conventional single-point tem
perature measurement using a commercial temperature sensor with 
accuracy of 87% (Chaudhuri et al., 2018a). Real-time temperature 
detection of the wearable sensor is possible owing to its wireless linkage 
to an AI-based HVAC control system that regulates the indoor temper
ature. Finally, our system demonstration exhibits an optimized 
HIL-HVAC control operation according to the occupant’s thermal com
fort status that substantially reduces the energy consumption by 20%, 
relative to an existing set-point HVAC control system. 

2. Materials and methods 

2.1. Design of a wearable temperature sensor 

The wearable temperature sensor consists of three thermistors, a BLE 
SoC, a coil antenna, a power management circuit and a 3.7 V lithium 
polymer battery. A 3 V constant voltage source was applied to each 10 
kΩ resistor, and they were serially connected to each thermistor. Sub
sequently, the voltage across the thermistor was used to convert the 
measured analog voltage signal to digital values in the BLE-SoC and 
communicate with the external BLE module. In the meantime, the coil 
antenna was connected with the integrated 100 mAh battery through a 
full-wave voltage doubler circuit for wireless charging. We used Feig 
Dynamic Antenna Tuner (FEIG ELECTRONIC®) for wireless charging of 
the device to automatically match the impedance of the transmitter to 
the 13.56 MHz standard frequency. To test the charging performance of 
the wearable device, a 5 W radiofrequency signal was applied on the 
wearable device by placing it on top of the transmitter. 

2.2. Fabrication of a soft wearable temperature sensor 

Flexible printed circuit board (FPCB) for soft wearable temperature 
sensors was fabricated through the photolithography process. Copper 
was deposited and patterned on polyimide (PI) substrate and then 
insulating PI layer was stacked on the patterned copper traces. Another 
copper trace layer was patterned on the stacked PI layer. A total of four 
individual constituent layers of copper traces were patterned in the same 
way. Among the four copper layers of the FPCB, the top and the bottom 
layers (35 μm in thickness each) were patterned to create traces that 
served as interconnects of the circuit, while the two middle layers (18 
μm in thickness each) were used to make coil patterns (14 turns) which 
served as an antenna for wireless charging. Electronic components (e.g., 
thermistors, resistors, capacitors, diodes, BLE-SoC, and battery) were 
mounted on copper electrodes on the top and bottom of the fabricated 
FPCB using a low-temperature solder paste (T5, SMDLTLFP10T5, Chip 
Quik). After ensuring that each component was mounted on their proper 
location, the device was placed inside a reflow oven (AS-5060, SMTmax) 
with peak temperature of 215 ◦C for 90 s. Then, the device was encap
sulated with a soft, adhesive silicone (Silbione RT Gel 4717, Bluestar 
Silicones; 2 mm in thickness) using polylactic acid (PLA) molds fabri
cated using a 3D printer (3DP-310 F, CUBICON). 

2.3. Adhesion strength test 

To compare the adhesion strength of various biocompatible adhesive 
materials, a standard vertical peel measurement test (ASTM Volume 
15.06, 2021) was employed for each type of material. Two mixing ratios 
(i.e., 10:1 and 15:1) were used for the following biocompatible adhesive 
materials – that is, Silbione 4717 (Bluestar Silicones®), Ecoflex gel 
(Smooth-On®), Ecoflex 0030 (Smooth-On®), Polydimethylsiloxane 
(PDMS, Dow corning®). Each test sample (2.5 cm (l) × 2.5 cm (w) × 1.0 
mm (t)) was placed on the skin of the flexor muscle and peeled-off 
vertically (90◦ angle) using a force gauge equipment (Mark-10). The 
adhesion strength of each material was calculated by dividing the 
measured force by the contact area between the test sample and the skin. 
Note that l, w, and t denote length, width, and thickness of the test 
samples. 

2.4. Water vapor transmission rate study 

The water vapor transmission rate values for Silbione 4717 and 
commercial wristband (Urethane) were measured based on ASTM E96 
(ASTM standard, 1989). Briefly, granulated dry cobalt chloride (Drier
ite, W.A. Hammond Drierite Co., LTD) was poured in the flasks (125 
mL). Then, each test sample (i.e., Silbione 4717: thickness of 0.5 mm, 1 
mm, 2 mm; urethane-based wristband: thickness of 1 mm) was used to 
seal the flask appropriately. The total weight change of each flask was 
measured for five days in a controlled environment (23 ◦C, 50% 
humidity). 

2.5. Characterization of temperature sensors 

The resistance changes of the thermistors were calibrated for the 
temperature measurements using a commercial infrared (IR) camera 
(A655sc, FLIR®) with varying temperature conditions using a hot plate 
(MSH-50D, DAIHAN-brand). Then, the accuracy of the calibrated tem
perature sensors, which were on top of the hotplate, was validated by 
comparing the reading with the one from the IR camera while changing 
the temperature of the hot plate. To determine the reliability of tem
perature sensing during mechanical distortions, various semicircle- 
shaped plastic models with different radius of curvature and mechani
cal stretcher were used to simulate the bending and stretching condi
tions of the device during use. 
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2.6. Mechanical modeling and FEA 

To verify the mechanical robustness of the wearable device for long- 
term use in daily life, a commercial finite element analysis (FEA) soft
ware (Abaqus, Dassault Systèmes) was used. A 3D model of the wearable 
skin temperature sensor (four-layered flexible printed circuit board with 
encapsulating polymer (Silbione 4717) was created. To verify the me
chanical robustness of the device in terms of stretching, bending, and 
twisting conditions, the following parameters were used for simulation: 
stretching of 20%; bending with radius of curvature of 10 mm; and 
twisting to 180◦, respectively. 

2.7. Algorithms for thermal comfort prediction 

To evaluate thermal comfort prediction models, five-fold cross-val
idations was used for various regression and classification models with 
following implementations. For random forest model, 106 trees were 
used for training (minimum samples split was 2, maximum depth was 
46, and other parameters followed default condition). Also, linear 
regression model, logistic regression model, random forest regression, 
support vector machine, ridge classifier, logistic discriminant analysis, 
support vector classifier (linear kernel, other conditions are default), 
gradient boosting machine classifier, and k-nearest neighbor classifier 
were implemented using python 3.9 with scikit-learn 1.0.2 and default 
parameters were used unless specified. 

2.8. HVAC power consumption measurement 

To determine the HVAC power consumption, a measurement system 
(SEM3000, KORINS) was used, which is composed of a plug-in type 
sensor and a receiver. The plug-in type sensor of the measuring device 
was connected to the air conditioning unit, and the power consumption 
of the air conditioning unit was wirelessly transmitted to the receiver. 
The receiver was connected to the internet and the transmitted power 
consumption (kWh) was recorded in the internet server every 1 minute. 
The total power consumption could be analyzed by simply summing up 
the power consumption every minute. 

2.9. HRV measurement and analysis 

To measure the individual heart rate variability (HRV) for each 
thermal condition (cool discomfort, comfort, warm discomfort), an 
electrocardiogram (ECG) was monitored using a three-lead wireless 
heart rate recording device (BioRadio, Great lakes Neurotechnologies®) 
with its software (BioCapture, Great lakes Neurotechnologies®). For 
every human participant, each of the three foam snap electrodes was 
placed as follows: one on the left arm, another one on the right arm, and 
the last one on the right leg (for ground). Each signal was recorded using 
the recording device with shielded lead cables. Then, the signal was 
transmitted to a computer using the Bluetooth communication. The 
measured ECG signal was analyzed by a customized software (MATLAB, 
MathWorks®). The R-R interval was analyzed by calculating the suc
cessive differences of the R-peaks with sampling frequency of 2 kHz, and 
the HRV values could be determined by calculating the successive dif
ferences of R-R intervals. 

2.10. Experiments on human subjects 

All experiments on human were performed under the approval from 
Institutional Review Board at Korea Advanced Institute of Science and 
Technology (protocol number: KH 2018-35), and all the volunteer 
subjects received informed consent. 

3. Results and discussion 

3.1. Wearable thermal preference prediction platform for real-time HIL 
control of the HVAC system 

Fig. 1a and b respectively show a conceptual illustration and an 
operation block diagram of a wearable thermal preference prediction 
platform for real-time HIL control of the HVAC system, which enables 
personalized thermal comfort management and building energy savings. 
The platform consists of a soft wearable three-point temperature sensor, 
external sensors measuring the room temperature and humidity, an AI 
model that provides thermal comfort prediction, and an HVAC system. 
The wearable temperature sensor captures the thermal condition of an 
occupant, and the external temperature and humidity sensors monitor 
the ambient thermal conditions, which serve as a feedforward signal for 
the thermoregulation system of the human body (Charkoudian, 2003; 
Romanovsky, 2014). Additionally, the system collects information on 
age, sex (Kingma and van Marken Lichtenbelt, 2015), and clothing 
insulation (American Society of Heating, 2005) through a one-time user 
survey via a smartphone application (created using the MIT App In
ventor, Massachusetts Institute of Technology; Fig. S1). All this infor
mation is transmitted wirelessly to a cloud server through Bluetooth 
communication, where the AI model makes real-time prediction of the 
thermal comfort status of the occupant and provides closed-loop control 
of the HVAC system to optimize the room temperature for maximal 
thermal comfort of the occupants. 

The wearable temperature sensor plays a pivotal role for continuous, 
real-time monitoring of the thermophysiological condition of an indi
vidual. Reportedly, the wrist is the most responsive body part reflecting 
one’s thermal status (Choi and Loftness, 2012). For this reason, many 
recent studies have used the wrist as the point of measurement to 
monitor one’s thermal comfort (Aryal and Becerik-Gerber, 2019; Deng 
and Chen, 2020; Jung et al., 2019; Li et al., 2021; Liu et al., 2019; 
Nazarian et al., 2021; Park and Park, 2022; Sim et al., 2016). Further, a 
previous study (Sim et al., 2016) revealed that the three-point temper
ature measurement from the upper wrist, the radial artery, and the ulnar 
artery leads to improved thermal comfort prediction compared to 
single-point temperature measurement from the wrist. We created a 
wristband-like soft device that can be laminated conformally on the skin 
following the curvature of wrist for three-point temperature measure
ment (Fig. 1c–e). A different subject’s skin temperatures at correct lo
cations can be measured after checking one’s pulse on the radial artery 
and ulnar artery locations as shown in Fig. S2. For the upper wrist re
gion, one can simply place the sensor at the center of upper wrist. Fig. 1c 
shows an exploded-view schematic diagram of the device, which in
cludes three thermistors (NCP15XH103F03 R C, Murata Electronics), a 
Bluetooth Low Energy System-on-Chip (BLE SoC, EYSHSNZWZ, Taiyo 
Yuden), a power management circuit with a coil antenna (18 μm-thick 
copper traces, 14 turns), and a rechargeable lithium polymer battery 
(100 mAh, LiPol Battery Co.) in a compact, flexible, and stretchable 
printed circuit (Figs. S3 and S4) encapsulated with an adhesive, 
air-permeable soft silicone (Silbione RT Gel 4717, Elkem Silicones; 2 
mm thickness; Figs. S5 and S6). The thermistors (temperature coefficient 
of resistance; − 3.8%⋅◦C− 1), which change their resistance according to 
the temperature, are used as temperature sensors. The temperature 
sensing circuit provides temperature-dependent voltage values to the 
analog–digital converter (ADC) unit of the BLE SoC to transmit digita
lized data to a cloud server via Bluetooth communication. The encap
sulating silicone of the device offers not only high adhesion force (1.5 
kPa) that enables intimate contact of sensors to the skin for stable 
temperature monitoring (Fig. 1e and Fig. S5), but also a sufficiently high 
water vapor transmission rate (WVTR = 0.417 g⋅m− 2 ⋅day− 1; Fig. S6), 
thereby facilitating evaporation of sweat necessary for thermal regula
tion of the skin. The optical and SEM images showing the cross-section of 
the device before and after the water evaporation test (Fig. S7) shows 
that the morphologies remain the same due to its high water vapor 
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permeability allowing evaporation of water instead of absorbing it in its 
material. This feature minimizes the influence of the wearable device on 
the skin temperature, allowing accurate temperature measurement that 
reflects bodily thermal comfort status. This is a clear advantage over 
commercial wristband temperature sensors, which are based on ure
thane (WVTR = ~0 g⋅m− 2 ⋅day− 1; Fig. S6). The wearable temperature 
sensor is elastic and highly deformable due to its interconnect design 
with a filamentary serpentine structure. Therefore, it allows facile 
adjustment of thermistor positions on the skin regardless of the size of 
the wrist (e.g., male versus female) to precisely access the upper wrist 
point and radial and ulnar arteries for three-point measurement 
(Fig. 1e). The wearable sensor can operate for over 12 h with a sampling 
rate of 1/30 Hz after 30 min wireless charging (power transmission 
frequency: 13.56 MHz) (Fig. S8), supporting sufficiently long and 
continuous monitoring of an individual’s thermal condition. Details on 
the circuit design and fabrication process of the wearable sensor can be 
found in the Materials and methods section. 

3.2. Mechanical and thermal characterization of the wearable 
temperature sensor 

Wearable temperature sensors should maintain mechanical robust
ness and electrical reliability for long-term use in daily life. To ensure 
the mechanical robustness of the wearable device, experimental and 
analytical studies were conducted for three different scenarios (i.e., 
stretching, bending, and twisting), as shown in Fig. 2a. A finite element 
analysis revealed that the circuit design with serpentine interconnects 
allows stretching over 20%, bending with a radius of curvature of 10 
mm, and twisting of 180◦ with only maximum principle strain of 0.7%, 
2%, and 0.9% in the metal (Cu) traces, respectively. Considering that the 
fracture strain of Cu is much higher (20–40% (Carreker and Hibbard, 
1953)), the results verify the robust and compliant nature of the device 
that can adapt to various deformations required for integration onto the 
curvilinear, dynamically changing surface of the skin. Further, it makes 
the device universally useable for people with different wrist sizes by 
allowing facile placement of the three sensors on the correct measure
ment points (upper wrist, radial artery, and ulnar artery) through elastic 
adaptation. 

Fig. 1. Overview of the wearable thermal preference 
prediction platform for real-time human-in-the-loop 
control of the Heating, Ventilation, and Air Condi
tioning (HVAC) system for personalized thermal 
comfort management and building energy savings. a) 
Conceptual illustration of the overall system. An oc
cupant’s thermal comfort level is predicted by an AI 
model based on environmental data and his/her skin 
temperature measured by a wearable sensor, and is 
used to make closed-loop control of the HVAC system. 
b) Block diagram showing the overall system opera
tion. c) Exploded-view schematic diagram of the soft 
wearable sensor, consisting of three thermistors, a 
Bluetooth Low Energy System-on-Chip (BLE SoC), a 
coil antenna, a power management circuit, and a 
battery. d) Photograph of the wearable temperature 
sensor highlighting its high deformability. e) Photo
graph of the same device attached on the wrist such 
that each thermistor accesses the upper wrist, radial 
artery, and ulnar artery.   
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The soft, elastic design of the wearable sensor leads to a reliable 
electrical operation, which is not affected by mechanical deformation 
such as bending and stretching. The integrated sensor provides highly 
accurate temperature sensing with resolution of 0.05 ◦C in the physio
logical temperature range (30–40 ◦C) (Chaudhuri et al., 2018b), which 
is comparable with the performance of an infrared (IR) camera (Fig. 2b). 
For wearable applications, it is important for the device to maintain the 
same, reliable sensing characteristic regardless of applied strain (Anas
tasova et al., 2017; Hattori et al., 2014; Jeong et al., 2014, 2013; Liu 
et al., 2016; Rodeheaver et al., 2021; Zhao et al., 2022). In this device 
architecture, since the sensing elements (i.e., thermistors) are connected 
with metal interconnects in series, any resistance change on the in
terconnects caused by the applied strain could hamper an accurate 
temperature measurement. Owing to the robust and stretchable design 
of the device, however, we could eliminate this potential issue, as 
demonstrated in Fig. 2c and d, which present negligible resistance 
changes with bending (radius of curvature from 0 to ∞) and stretching 
(up to 40%). These results ensure stable and reliable sensing ability for 
wearable body temperature measurement. Fig. 2e and f show the 
capability of the wearable sensor to provide real-time, continuous 
measurement of the bodily thermal response from the three key mea
surement points on the wrist (i.e., upper wrist, radial artery, ulnar ar
tery). The wearable sensor can closely capture the temperature changes 
of the three wrist points (Fig. 2e) over time, reflecting the body’s 
response to the change of the room temperature controlled by a com
mercial heater and an air conditioner. The temperature value predom
inance as well as the temperature difference between each skin location 
change over time, indicating that the three-point temperature mea
surement can contribute to improving the thermal comfort prediction 

(Fig. 2f and Fig. S9). Therefore, we subsequently used the sensor to 
collect the thermophysiological data necessary to make a real-time 
prediction of an occupant’s thermal comfort using the AI model. 

3.3. Performance of machine learning models for thermal comfort 
prediction 

To develop the AI model for thermal comfort prediction, the envi
ronmental and skin physiological data of occupants (Table S1) were 
collected every 30 s in varying thermal environments. A total of 18 
experiment sessions for seven subjects were conducted through the data 
collection scheme shown in Fig. 3a. The total dataset was divided into a 
6:2:2 ratio for training, testing, and validation sets for hyper parameter 
tuning of the model using Bayesian optimization. Using five-fold cross- 
validations, we tested various machine learning models and compared 
the thermal comfort prediction performance of different AI models 
(Fig. 3b) including regression models (linear regression, logistic 
regression, random forest regression, support vector machine regres
sion) and classification models (random forest classifier, ridge classifier, 
logistic discriminant analysis, support vector classifier, gradient boost
ing machine classifier, and k-nearest neighbor classifier). Random forest 
classifier, an ensemble learning method that uses a collection of weak 
learners based on decision trees, showed the best performance among 
the machine learning models. A representative model of random forest is 
illustrated in Fig. 3c (Breiman, 2001). A wide variety of studies based on 
machine learning have been successfully carried out using the random 
forest algorithm (Aryal and Becerik-Gerber, 2020; Chaudhuri et al., 
2018b), consistent with our results. Fig. 3d summarizes the prediction 
performance of the applied random forest classifier by constructing a 

Fig. 2. Mechanical and thermal characterization of 
the wearable temperature sensor. a) Finite element 
modeling of the wearable sensor for stretching (20%), 
bending (10 mm radius of curvature), and twisting 
(180◦) deformation (top) and the corresponding op
tical image of the device (bottom). b) Plot showing 
high accuracy of the wearable temperature sensor 
comparable with the performance of an infrared (IR) 
camera. c) Relative resistance changes of the wear
able temperature sensor as a function of bending 
radius. d) Relative resistance changes of the same 
device as a function of applied strain. e,f) Infrared 
images of the top and the bottom of the left arm 
showing the temperature sensing spots (i.e., upper 
wrist, radial artery, and ulnar artery) (e) and the 
correlation of skin temperatures with ambient tem
perature change (f). Green, blue, and orange back
grounds in the plot indicate that the room is in a 
natural, cooling, and heating condition, respectively. 
The gray, blue, red, and green lines indicate the 
temperature for the room, ulnar artery skin, radial 
artery skin, and the upper wrist skin, respectively.   
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confusion matrix for each class. The prediction accuracies for each class 
of thermal comfort were 91.7% (cold discomfort; class − 1), 94.7% 
(comfort state; class 0), and 94.3% (hot discomfort; class +1), respec
tively. To assess the importance of each feature and their contributions 
to the performance of the model, we used the permutation importance of 
input features to the trained random forest classifier, as shown in Fig. 3e. 
The permutation importance was analyzed by calculating the increment 
of prediction error when the target feature was randomly shuffled 
(Altmann et al., 2010). The results show that air temperature (Tair) has 
the largest permutation importance, followed by upper wrist skin tem
perature (Tskin3), relative humidity (RH), ulnar artery skin temperature 
(Tskin2), clothing factor (CLO), radial artery skin temperature (Tskin1), 
upper wrist skin temperature gradient (Tskin3_grad), ulnar artery skin 
temperature gradient (Tskin2_grad), air temperature gradient (Tair_grad), 
radial artery skin temperature gradient (Tskin1_grad), age, and sex. These 
results show that the feature importance of the sensing spots of the wrist 
varies, which is consistent with the results of a previous study (Sim et al., 
2016) that reported varying accuracies for different sensing spots of the 
wrist. 

Using the random forest model, accuracy comparisons were per
formed according to the number of skin temperature sensors in the wrist. 
A random forest model with 106 trees, a maximum depth of 46, mini
mum sample splits of two, and otherwise defaults of scikit-learn 
(Pedregosa et al., 2011) was used. The accuracy of the model (with all 
features) increased up to 93.9% (Fig. 3f) with the three-point mea
surements, which was similar to the best accuracy among the 
state-of-the-art thermal comfort prediction methods (Chaudhuri et al., 

2020). Without information of age, sex, and clothing insulation vari
ables, the wearable temperature sensor with three-point measurements 
exhibited a significant increase of accuracy of 2.9% (p-value <0.01), as 
compared with a single-point measurement (Fig. 3g). Additionally, 
without any external sensor information (RH and Tair), the wearable 
temperature sensor shows an even more significant increase of accuracy, 
11.2% (p-value <10− 7), for three-point measurement relative to 
single-point measurement (Fig. 3h). This result shows that the 
multi-sensing strategy can be applied to improve the thermal comfort 
prediction performance. The custom wearable temperature sensor with 
three-point measurement can be a better choice for an efficient 
HIL-HVAC control system compared to the commercial wristband that 
uses single-point temperature measurement. 

Additionally, since the overall accuracy does not take into account 
the different sizes of each class, we analyzed our model’s performance 
using the receiver operating characteristic (ROC) (Fig. 3i) and precision 
recall (PR) curves (Fig. 3j) to show the prediction power of each class 
(Davis and Goadrich, 2006). The ROC curve assesses the trade-off be
tween the true positive rate and the false positive rate of the trained 
model using different probability thresholds from 0 to 1. Similarly, the 
PR curve shows the trade-off between the true positive rate and the 
positive predictive value of the trained model. Both area under curve 
(AUC) values for ROC and PR were over 0.9 (Table S2) for each class, 
indicating that the AI thermal comfort prediction model can be applied 
to the HVAC control system with accurate thermal comfort prediction. 
However, this work focuses on investigating the thermal comfort pre
diction for occupants who underwent the thermal comfort experiments. 

Fig. 3. Performance of machine learning models for 
thermal comfort prediction. a) Experimental proced
ure for collecting the thermal state by changing the 
thermal environment in the sequence of 15 min sta
bilization, 30 min cooling, 30 min heating, and 30 
min cooling. The thermal comfort questionnaire in
cludes three thermal states: cool discomfort, comfort, 
and warm discomfort. b) Comparison of accuracy of 
machine learning models including linear regression, 
logistic regression, Support Vector Machine (SVR), 
Ridge classifier, Logistic Discriminant Analysis (LDA), 
Support Vector Classifier (SVC), Gradient Boosting 
Machine (GBM) classifier, Random Forest (RF) 
regression, K-Nearest Neighbor (KNN) classifier, and 
RF classifier. c) Schematic diagram of the random 
forest classifier. d) Confusion matrix of the model 
with a total of 3045 data for the thermal comfort 
value with cool discomfort (− 1), comfort (0), and 
warm discomfort (+1). e) Permutation importance of 
the features using the RF classifier. The abbreviated 
expressions for features in the blue box are defined in 
(f). f) Thermal comfort prediction accuracy according 
to the number of sensors when using all features of air 
temperature (Tair), upper wrist skin temperature 
(Tskin3), relative humidity (RH), ulnar artery skin 
temperature (Tskin2), radial artery skin temperature 
(Tskin1), upper wrist skin temperature gradient 
(Tskin3_grad), ulnar artery skin temperature gradient 
(Tskin2_grad), air temperature gradient (Tair_grad), radial 
artery skin temperature gradient (Tskin1_grad), clothing 
factor (CLO), sex, and age. g, h) Accuracy of thermal 
comfort prediction when using all features except 
age, sex, clothing factor (g), or all features except RH 
and Tair (h). (*p-value<0.05, * *p-value<0.01, * * *p- 
value<0.001). i,j) Receiver operating characteristic 
curve (i) and precision-recall curve (j) of the RF 
classifier. The insets show magnified views of the 
upper left and the upper right part of the curves in (i) 
and (j), respectively.   
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Therefore, the work that involved seven people in the experiment has 
limitation on building up a model that can perform for subject outside of 
the dataset, which is actually beyond the scope of this work. 

3.4. Proof-of-concept demonstration of the HIL-HVAC control 

Proof-of-demonstration experiments were held for the HIL-HVAC 
control system through monitoring of power consumption along with 
measurements of physiological changes of the body based on a heart rate 
variability (HRV) analysis. A block diagram of the overall system 
operation is shown in Fig. 4a. From the device, three-point wrist skin 
temperature values from the upper wrist, radial artery, and ulnar artery 
were obtained and these values were transmitted via Bluetooth low 
energy communication to a microcontroller interfaced with a computer. 
Using a smartphone application, the occupants input their age, sex, and 
clothing information, which were used as a clothing insulation factor. 
From the external sensors, air temperature and relative humidity values 
were measured. All these input values were automatically sent to the 
cloud server to feed the AI model as input in real-time. Based on these 
input variables and calculated three-point wrist skin temperature gra
dients, the AI model predicted the thermal comfort values. Finally, the 
corresponding HVAC control signal was calculated based on the thermal 
comfort value, and then sent to the HVAC system via IR communication. 
Every 30 s, for the hot discomfort condition (+1), the HVAC control 
system decreased the air temperature by 1 ◦C, whereas for the cold 
discomfort condition (− 1), the HVAC control system increased the air 
temperature by 1 ◦C. To find the upper limit condition of the comfort 
state for energy-efficient operation, the setting temperature was 
increased by 1 ◦C for the comfort state (0) when the thermal comfort 
value changed from a cold discomfort state (− 1) to the comfort state (0). 
Fig. 4b is a schematic diagram illustrating the experimental setup in a 
room and an optical image is shown in Fig. S10. With the real-time HIL 
controlling strategy, the HVAC system could be efficiently operated 

based on the individual thermal comfort prediction. 
To validate our system’s energy-saving performance, we measured 

and compared the power consumption for two different HVAC control 
strategies: HIL-based control and set-point control, as shown in Fig. 4c. 
For the set-point control, the target air temperature was set to 25 ◦C 
based on the thermal comfort zone from the ASHRAE standard 55 (Yoon 
et al., 2016), which is widely used for setting the temperature for 
building’s HVAC systems. For each experiment, the power consumption 
and air temperature were monitored using a plug-type power meter 
(SEM3000, KORINS) and the data were updated to a cloud server. The 
total power consumption accumulated over time was compared with the 
HVAC system’s power consumption (Fig. 4d). By using the HIL-based 
control system, the total power consumption was reduced by 20% 
compared to the set-point control (i.e., 131 kWh power consumption for 
set-point control vs. 105 kWh for the HIL-based control for a 6-h 
operation). 

Physiological responses to thermal environments have also been 
shown to be correlated with thermal comfort (Nkurikiyeyezu et al., 
2018; Shin, 2016). HRV is widely used to analyze the response of the 
autonomic nervous system to changes in the internal and external 
environment by observing small changes in the time interval between 
successive heartbeats (Le et al., 2022; Shaffer and Ginsberg, 2017). To 
validate the thermal comfort assessment, we analyzed HRV within the 
HIL-HVAC control system environment by measuring the electrocar
diogram (ECG). ECG signals were measured with three-lead electrodes 
which were place on the left arm, right arm, and right leg (ground), as 
shown in Fig. S11, and the collected data was sent to a computer via 
Bluetooth communication. Fig. 4e shows the individual HRV range of 
each thermal comfort value. The average HRV value decreased from 
33.8 ms to 16.5 ms as the thermal comfort changed from − 1 to +1. This 
result is consistent with the ones of the previous studies (Nkurikiyeyezu 
et al., 2018; Shin, 2016; Wang et al., 2022), which reported that the 
average HRV increases in the cool discomfort condition, while decreases 

Fig. 4. Proof-of-concept demonstration of human-in- 
the-loop (HIL) HVAC control for an occupant’s ther
mal comfort management and building’s energy sav
ings. a) Block diagram of the overall system operation 
for HIL-HVAC control. b) Schematic diagram illus
trating the experimental setup in a room. c) Plot 
comparing power consumption of the HVAC system 
and room temperature changes made by two different 
approaches: HIL-based (red) vs. set-point-based 
HVAC control (gray; set temperature = 25 ◦C). Blue 
y-axis and arrows indicate power consumption, and 
orange y-axis and arrows indicate room temperature. 
d) Total power consumption of the set-point (gray) 
and the HIL-based control (red), highlighting high 
energy-efficiency of the HIL-based approach. e) An 
occupant’s heart rate variability (HRV) range for 
different thermal comfort conditions (i.e., cool 
discomfort, comfort, and warm discomfort). f) Mea
surement of the occupant’s HRV during HIL-based 
HVAC operation in (c). The data show that the 
occupant reaches a thermally comfortable state in 
about 100 min and remains in this state.   
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in the warm discomfort condition, relative to the one in the thermally 
comfortable state. Based on this result, we used the measured HRV as a 
thermal comfort indicator to verify the performance of our thermal 
comfort prediction system. Fig. 4f compares the HRV changes over time 
under machine learning-based HIL-HVAC control. For the warm 
discomfort state at time 0 in Fig. 4c, the measured HRV value was in the 
range of the individual HRV values for a warm discomfort state in 
Fig. 4e. As the HIL-HVAC control system regulates the temperature of 
the room, the occupant had reached a more comfortable state, as 
signified by the measured HRV values at 100, 200, and 300 min 
(Fig. 4e). The results verify that the system predicts the subject’s rele
vant thermal comfort. The proof-of-demonstration confirms that the 
real-time HIL-HVAC control system not only reduces energy consump
tion but also improves the thermal comfort of the occupants. 

4. Conclusion 

In summary, the AI-based HIL-HVAC control system interfaced with 
a skin-adhesive wearable sensor was shown to effectively and efficiently 
improve the thermal comfort of an occupant and reduce the building 
energy consumption by providing pertinent control inputs. The 
compliant wearable device equipped with a three-point temperature 
sensor allowed stable and accurate measurements despite mechanical 
distortions, which is indispensable for practical use in daily life. The 
thermal comfort prediction model based on the random forest algorithm 
exhibited the best prediction accuracy of 93.9%, which was enabled by a 
three-point wrist skin temperature measurement strategy. Compared to 
the set-point control, the AI-based HIL-HVAC control system could 
reduce building energy consumption by 20%. The monitored HRVs were 
consistent with the range of individual HRV values for the correspond
ing thermal comfort values, demonstrating that the real-time HIL-HVAC 
control system can reduce building energy consumption while offering 
optimal individual thermal comfort. In future work, the proposed HIL- 
HVAC system can be further improved by integration with additional 
physiological and environmental sensors such as a photo
plethysmography sensor (Lee et al., 2022) with the compliant wearable 
platform for simultaneous monitoring of HRV. Moreover, since this 
system focuses on controlling the thermal comfort of an individual 
occupant, in order to ensure wider applicability, statistical optimization 
approach (Gao et al., 2020; Li et al., 2021) would need to be applied to 
maximize the number of occupants feeling thermal comfort. Lastly, to 
enable a system that can satisfy multiple occupants, additional hardware 
which can control each occupant’s thermal environment needs to be 
developed and integrated in the future. 
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