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At-home wireless sleep monitoring patches for the
clinical assessment of sleep quality and sleep apnea
Shinjae Kwon1,2†, Hyeon Seok Kim1,2†, Kangkyu Kwon1,3, Hodam Kim1,2, Yun Soung Kim4,
Sung Hoon Lee1,3, Young-Tae Kwon5, Jae-Woong Jeong6, Lynn Marie Trotti7, Audrey Duarte8,
Woon-Hong Yeo1,2,9,10*

Although many people suffer from sleep disorders, most are undiagnosed, leading to impairments in health.
The existing polysomnography method is not easily accessible; it’s costly, burdensome to patients, and requires
specialized facilities and personnel. Here, we report an at-home portable system that includes wireless sleep
sensors and wearable electronics with embedded machine learning. We also show its application for assessing
sleep quality and detecting sleep apneawith multiple patients. Unlike the conventional system using numerous
bulky sensors, the soft, all-integrated wearable platform offers natural sleep wherever the user prefers. In a clin-
ical study, the face-mounted patches that detect brain, eye, and muscle signals show comparable performance
with polysomnography. When comparing healthy controls to sleep apnea patients, the wearable system can
detect obstructive sleep apnea with an accuracy of 88.5%. Furthermore, deep learning offers automated
sleep scoring, demonstrating portability, and point-of-care usability. At-home wearable electronics could
ensure a promising future supporting portable sleep monitoring and home healthcare.
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INTRODUCTION
Sleep is an integral part of the human life cycle, and its quality and
duration play a critical role in physical, mental, and social health (1–
4). As an increasing number of people recognize sleep as one of the
essential factors in a healthy lifestyle, there has been rapid growth in
sleep studies. The market size of the global sleep-related economy
was $432 billion and is expected to grow to $585 billion by 2024 (5).
Despite this elevated awareness, the average quality of a person’s
sleep has declined, and sleep disorder has become increasingly prev-
alent. Insufficient and poor sleep cause reduced labor productivity
and increased mortality rates, leading to an economic loss of $411
billion in 2015, which is expected to grow to $467 billion in 2030 (6).
Moreover, the American Association of Sleep Medicine (AASM)
reports that one of the most prevalent sleep disorders, obstructive
sleep apnea, afflicted 12% of the adult population in the United
States and noted that 80% of them were left undiagnosed (7). The
gold standard of sleep monitoring is polysomnography (PSG), but
its various downsides impede its accessibility (8). PSG involves
comprehensive measurements of patient physiological signals, in-
cluding electroencephalograms (EEGs), electrooculograms

(EOGs), electromyograms (EMGs), pulse oximetry, and more.
Because of its complexity and difficulty in both hardware setups
and data analysis, standard PSG is conducted at a specialized hos-
pital with a certified sleep technologist, resulting in a time and cost
burden.Moreover, because of the foreign environment with numer-
ous hard-wired sensors and electronics placed throughout the body,
patients may not have their natural sleep patterns, which can lead to
inaccurate sleep quality assessment and disorder diagnosis.

Recent progress in the development of wearable devices has pre-
sented alternative ways for sleep monitoring at home (8, 9). One of
the widely used platforms is a wristband with integrated photople-
thysmography and motion sensors. The convenience of the watch is
attractive but fails to comprehensively cover the amount of physio-
logical information needed for precise in-depth sleep analysis (10).
EEG is often the most direct indicator of sleep stages and sleep dis-
orders (11). Some headband devices can measure EEG and provide
more precise sleep analysis (12–16). However, their bulky and rigid
form factor discourages users from mounting them on their heads
during sleep. Recent studies presented alternative form factors for
sleep EEGmeasurement, such as those mounted either in or around
the ear (17–19). Despite the improved usability, the alternative
device locations suffer from poor signal quality and less accurate
sleep analysis. For comfortable and seamless integration with our
body for high-quality physiological monitoring, many recent
works on developing soft wearable systems have been directed
toward enhancing various aspects of epidermal electronics (20,
21). Prior wearable devices show enhanced skin-contact quality
by integrating the system on a soft substrate (22–25). However,
the required membrane materials for these ultrathin devices limit
the number of sensors that can be embedded in the system while
causing mechanical reliability issues.

Here, this work presents a fully portable and highly skin-con-
formable at-home sleep monitoring system that integrates soft
and functional materials with electronics for a comfortable yet reli-
able wearable system. This wireless wearable platform addresses the
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existing challenges and limitations of the gold-standard sleep mon-
itoring tools and methods used at sleep clinics. This paper describes
the unique advantages of soft hybrid manufacturing and packaging
technologies to offer enhanced mechanical reliability and comfort-
able wearability with conformal device lamination to the skin. Laser
micromachining shows scalable manufacturing of nanomembrane
stretchable sensors and interconnectors. A composite of elastic
fabric and ultrasoft silicone elastomer makes a substrate to integrate
sensors and electronics together, providing strain distribution and
strong adhesion to the skin. The soft wearable platform, mounted
on the face, wirelessly measures high-quality sleep physiological
signals, including EEG, EOG, and EMG, which are comparable to
the data recorded by the PSG system at a sleep clinic. In addition, we
develop a deep-learning algorithm, convolutional neural networks
(CNNs). When the CNN is embedded in the portable sleep patches,
we are able to get automated quantitative sleep scoring and apnea
detection. A clinical study involving sleep patients and healthy con-
trols fully validated the wearable device’s performance. This porta-
ble platform only needs two unobtrusive patches for clinical-grade
sleep analysis that use Bluetooth to deliver data to a tablet or smart-
phone wirelessly. Unlike the PSG, requiring more than 10 wired
sensors and bulky electronics, the developed wearable patch can
be used anywhere, such as at a user ’s home, offering a natural
and comfortable sleep. Collectively, the wireless wearable biomedi-
cal systems that combine machine learning technologies show a
great potential to expand home-sleep monitoring opportunities
while capturing other application opportunities in home health
care, digital health monitoring, and quantitative disease diagnosis.

RESULTS
Design, structures, and fabrication of at-home sleep
monitoring patches
Figure 1A presents an overview of an at-home sleep monitoring
patch. The portable wearable sleep monitor includes two small
patches: one for measuring EEG and EOG on the forehead and
the other for measuring EMG on the chin. These physiological
signals are analyzed in real time to detect sleep stages and disorders.
The soft and unobtrusive patch has an exceptionally smaller form
factor than other wearable sleep monitors (Fig. 1, B and C), offering
seamless integration with the skin for high-fidelity, reliable signal
detection during sleep. All measured data are wirelessly transmitted
via Bluetooth to a mobile device such as a smartphone or a tablet.
The data are then analyzed with CNN in real time for automated
sleep scoring and apnea event detection. Photos in Fig. 1 (B and
C) highlight thewearable patch’s intimate contact with the face, spe-
cifically the forehead and chin. Figure 1D shows the front side of the
highly soft membrane patch on a polytetrafluoroethylene (PTFE)
substrate for easy handling. Photos in Fig. 1 (E and F) show the
device’s back side incorporating skin-contact nanomembrane elec-
trodes that are highly stretchable and flexible. Collectively, the soft
wearable platform provides user comfort, ease of use, and portabil-
ity, such that users can easily follow instructions to measure their
sleep at home without technicians. An example in movie S1
shows a device manual that users can easily follow compared to a
complicated, time-consuming PSG setup. Illustrations in Fig. 1 (G
and H) capture the details of integrated sensors and electronics in
the wearable system. All electronic components are embedded in a
soft fabric composite made of elastic nonwoven polyurethane and

medical-grade silicone adhesive (Silbione, Elkem). The fabric pack-
aging provides a nonsticky dry surface for convenient device han-
dling while protecting the electronics from excessive mechanical
deformation (26, 27). In addition, the inner layer of a silicone adhe-
sive incorporates nanomembrane electrodes and stretchable copper
interconnectors, facilitating enhanced skin contact. The dry elec-
trodes on a patterned polyimide film offer reusability for multiple
days of sleep recording, unlike the one-time-use gel electrodes in the
gold-standard PSG (28–30). The electrode and the integrated circuit
relate to a stretchable copper interconnector encapsulated with an
elastomer. On the fabric side of the device, the multilayered flexible
circuit includes a Bluetooth-based wireless module and a recharge-
able Li-polymer battery. This patch uses a 150-mAh Li-polymer
battery for the forehead unit, and the power consumption is 52.61
mW with a battery life of 10.55 hours. The chin patch uses a 110-
mAh Li-polymer battery, and the power consumption is 34.06 mW
with a battery life of 11.95 hours. A clip in movie S2 captures an
example of how the wearable system can wirelessly measure EEG,
EOG, and chin EMG signals using a table. Table 1 summarizes
and compares our work with other EEG-based wearable sleep mon-
itors, capturing the unique advantages of the soft wearable sleep
patch. Our wireless system that measures multiple physiological
signals offers a clinical assessment of sleep quality and disorder
with multiple patients, showing the highest accuracy to date. Specif-
ically, its highest sleep scoring agreement with PSG, in both manual
and automated analysis, captures a clear advantage using our CNN-
based classification model.

Figure 2 presents the details of the wearable system’s architecture
and fabrication procedures. We carefully chose the targeted loca-
tions of electrodes for measuring EEG, EOG, and chin EMG by fol-
lowing the PSG setup and the standards from AASM (Fig. 2A) (31).
As a result, there are two-channel EEG electrodes (EEG1 and
EEG2), two-channel EOG electrodes (EOG1 and EOG2), and a
single-channel chin EMG electrode with their ground and reference
electrodes. A diagram in Fig. 2B shows the overall flow of how we
measure and analyze data. This system includes a multichannel dif-
ferential amplifier and Bluetooth low-energy microcontroller with a
2.4-GHz antenna. A table or phone, embedding the CNN algo-
rithm, processes and analyzes the recorded data to provide sleep
stage classification and apnea detection outputs. For the fabrication
of multiple devices, we developed a scalable manufacturing method
using laser micromachining of stretchable electrodes and intercon-
nectors. The femtosecond laser process offers high-precision pro-
cessing of various materials and high-throughput manufacturing
of complex structures (23). Photos in Fig. 2 (C and D) show a fab-
ricated array of gold electrodes on a 5-inch square plate and a cor-
responding microscopic image of the electrode with curved
patterns, providing enhanced stretchability and mechanical reliabil-
ity (23, 24, 32). The laser spot size used in this fabrication is 13 μm,
and the pattern width of each electrode is 124 μm, providing enough
skin contact. Photos in Fig. 2 (E and F) show a set of fabricated
copper interconnectors on a large glass (8 inches by 10 inches),
which makes an electrical connection between multiple electrodes
and integrated circuits. In this work, we used copper connectors to
offer enhanced solderability and robust electrical connections with
the device (Fig. 2F). The connector’s pattern width is 79 μm, and the
laser spot size is 18 μm. The laser spot size is larger than the elec-
trode case because higher laser power and repetition are required
due to copper ’s higher thermal conductivity and thickness.
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Fig. 1. At-home sleep monitoring patches for assessing sleep quality and sleep apnea. (A) Image of an at-home wireless sleep monitoring system for real-time,
multichannel recording of EEG, EOG, and EMG signals and deep learning–based classification of sleep stages and sleep apnea detection using a portable device. (B and C)
Photos of the soft wearable patches conformally attached to the facial area, including the forehead (B) and the chin (C). Scale bars, 2 cm. (D) Photo of the forehead patch
on a device carrier made of PTFE for convenient handling and storage for multiday uses. Scale bar, 2 cm. (E) Photo of the backside of the highly flexible soft patch in (D)
showing nanomembrane electrodes. Scale bar, 2 cm. (F) Photo of the chin patch showing its stretchability to make conformal lamination to the skin (inset image). Scale
bar, 1 cm. (G) Illustration of the sleepmonitoring systemmounted on the face, including electrodes, interconnectors, circuits, and adhesive (Silbione) on a fabric. Scale bar,
3 cm. (H) Details of the multilayered flexible circuits, made of metals, polymers, and chips, which are fully encapsulated by silicone membranes for strain isolation during
device assembly, handling, and wearing during sleep.
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Overall, the laser micromachining of electrodes and interconnectors
enables fast, reliable, and scalable manufacturing capabilities. An
example in movie S3 shows how we used a laser to fabricate the crit-
ical components of the wearable system. The electrode, connected
with the stretchable wire via soldering, maintains mechanical stabil-
ity when mounted on a soft fabric (Fig. 2G). In contrast to the con-
ventional woven fabric, the advantage of the fabric composite is its
omnidirectional elasticity (Fig. 2H) and convenient processibility
without untangling due to its nonwoven structure composed of a
random network of fibers. Another advantage is that the soft sili-
cone adhesive (Silbione) penetrates through the networks of
fabric fibers to achieve mechanical interlocking for robust integra-
tion of the bilayer while leaving the top side of the fabric dry and
nonsticky for handling (Fig. 2, I and J). This soft packaging
method using the fabric provides strain isolation (fig. S1) to avoid
mechanical damage to the electronics during device assembly, han-
dling, andmultiple uses during sleep (33–35). The additional details
of device fabrication appear in fig. S2 and Methods. In addition, the
details of the wireless circuit that we developed appear in fig. S3,
which shows two devices mounted on the forehead and the chin.

Mechanical and material characterization of the soft
wearable system
This study captures the mechanical properties of the developed soft
electrodes and interconnectors via computational modeling and ex-
perimental validation. The finite element analysis (FEA) results in

Fig. 3 (A and B) capture the mechanical stretchability of the de-
signed structures up to 30%, showing that maximum strains on
the gold and copper membranes remain well below fracture and
yield strains (1 and 0.3%, respectively) (36, 37). Additional FEA
study shows that the electrode and connector can stretch up to
108 and 110% before fracture and yield, respectively (fig. S4). The
maximum tensile strain the structure can endure is above 200%
before fractures (fig. S5). An experimental study in Fig. 3C validates
the mechanical reliability of fabricated components during a
stretching test. The testing coupons include Au electrodes and Cu
connectors to facilitate more accurate stretching measurements
(inset image of Fig. 3C). There are no observed fractures or yielding
features. Cyclic stretching of the electrode and connector and elec-
trical measurements in Fig. 3D proves the safety for multiple uses.
With 1000 cycles of 30% tensile stretching, there is negligible change
in resistance with intermittent artifacts. Experimental validation of
the omnidirectional stretchability and elasticity of the fabric shows
the fabric’s stretchability above 300% with Young’s modulus of 1.29
MPa and Poisson’s ratio of 0.184 (fig. S6). In addition, we conducted
additional sets of experiments to find the optimal material’s thick-
ness and peeling strength by using the soft silicone adhesive (Sil-
bione). As summarized in Fig. 3E, the membrane’s thickness
decreases according to the coating speed of the material on a sub-
strate (details of experimental conditions in fig. S7). On the other
hand, the peeling strength is proportional to the thickness due to
the increased energy required for the elastomer’s deformation. In

Table 1. Comparison of EEG-recording wearable sleep monitors.

Reference Form factor Electrode type

Detecting signals* Clinical
validation with

patients
(number)

Manual scoring
accuracy
(%/kappa†)

Automated
scoring
accuracy
(%/kappa)

Disorder
detection

accuracy (%)EEG EOG EMG

This work
Soft,

wireless
patch

Stretchable,
conformable

nanomembrane (dry)
O O O Yes (8) 82.43/0.74 83.89/0.76 88.52‡

(12) Rigid, wired
headband

Conventional
gel (wet)

O O O – – 74/– –

(13) Flexible,
wired patch

Printed
composite (dry)

O O O – – – –

(14) Rigid, wired
headband

Dry conductive foam
and

conventional (wet)
O X X – – 76.7/0.69 –

(15)
Rigid,
wireless
headband

Conventional
gel (wet)

O O X Yes (40) – 71.3/0.63 –

(16)
Rigid,
wireless
headband

Rigid flat metal (dry) O X X – – 83.5/0.75 –

(17)
Wired
ear plug

Conductive
fabric (dry)

O X X – – 74.1/0.61 –

(18) Wired
ear plug

Rigid iridium
oxide (dry)

O X X – – 80.5/0.73 –

(19) Wired patch
Printed Ag with

conductive gels (wet)
O X X – 55/0.38 70/0.58 –

*EEG, electroencephalograms; EOG, electrooculograms; EMG: electromyograms. †Cohen’s kappa value. ‡Only data showing sleep disorder detection in
patients.
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this study, we determined that a 250-μm-thick membrane is ideal
for providing enough peeling strength and skin conformability. A
graph in Fig. 3F summarizes measured peeling strength values
and signal-to-noise ratio (SNR) of measured contact signals with
the skin for 7 days of sleep. This result shows high degradation of
peeling strength when the device is not washed, whereas the soap-
washed specimen shows marginally degraded peeling strength. The
major degradation factors in adhesion are dirt and skin oil that can
be washed off by cleaning with soap (26). The SNR values with

washed devices show minimal changes in SNR throughout 7 days
of monitoring, offering a multinight use of the wearable patch for
detecting high-fidelity sleep data at home. When measuring physi-
ological sleep signals, the wearable device’s skin contact quality is
critical to maintaining low skin-dry electrode contact impedance
(28, 30, 38). Therefore, we developed a model for quantitative anal-
ysis by assuming that a wearable patch has enough deformability
and stretchability to fill the gap between the skin’s sinusoidal mor-
phology and the backing layer’s flat surface (detailed description in

Fig. 2. System architecture and fabrication of sleep monitoring devices. (A) Specific locations of electrodes in the sleep patches for monitoring EEG, EOG, and EMG.
Scale bar, 1 cm. (B) Diagram showing the sequence from physiological signal detection to Bluetooth (BLE) based wireless data transmission and processing with a deep
learning algorithm. DAQ, data acquisition. ADC, analog to digital converter. SPI, serial peripheral interface. RF, radiofrequency. (C) Photo of a 7 × 9 array of nanomembrane
electrodes fabricated via laser micromachining on a 5-inch glass capturing its scalable manufacturability. Scale bar, 1 cm. (D) Optical microscope image of an electrode in
(C), showing open-mesh patterns. Scale bar, 1 mm. (E) Photo of four sets of stretchable copper interconnectors fabricated via laser micromachining on an 8 inch–by–10
inch glass. Scale bar, 2 cm. (F) Optical microscope image of interconnectors with the solderable contact pad for connecting electrodes and circuits. Scale bar, 1 mm. (G)
Fabricated electrode integrated with a piece of soft fabric after transfer printing and connecting with a stretchable interconnector. (H) Demonstrated stretchability of the
electrode in (G) by conformally wrapping around a 1-inch-diameter sphere. (I and J) Optical microscope images of a fabric-silicone adhesive composite enclosing the
electrode, showing a top-view structure (I) and a cross-sectional view (J). The soft silicone adhesive penetrates through the networks of fabric fibers to achievemechanical
interlocking for robust integration of the bilayer. Scale bars, 3 mm.
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Fig. 3. Mechanical and material characterization of the wearable system. Computational modeling results predicting mechanical stretchability (30%) of an Au elec-
trode (A) and a Cu interconnector (B). (C) Photo of an electrode connected with an interconnector under stretching up to 30%, showing no adverse outcomes. Scale bar,
500 μm. (D) Change in electrical resistance of the integrated electrode in (C) throughout a cyclic stretching test (1000 cycles with 30% strain), demonstrating its reliability
with a negligible change in relative resistance. (E) Change of a silicone adhesive (Silbione) in thickness and peeling strength according to its spin-coating speed (rev-
olutions per minute). (F) Peeling strength and signal-to-noise ratio (SNR) values of a skin-mounted electrode during 7 days. Among them, a sample that is cleaned with
soap daily maintains the skin-contact quality andmechanical reliability throughout the 7 days, such as the control sample. (G to J) SEM images of four substrates on a skin
replica showing the quality of surface contact. Samples are made of different materials, including two silicone adhesive layers: spin-coated at 500 rpm (G) and spin-coated
at 3000 rpm (H), Ecoflex 30 (I), and PDMS (J). Scale bars, 300 μm. Colorized areas show the coated soft materials on a fabric. (K) Plot of theoretical total interfacial energy
depending on an elastomer thickness (Silbione). (L) Conformal contact analysis determined by work of adhesion and Young’s modulus. The dashed line represents the
critical points deciding conformal or nonconformal regimes. (M) Impedance density measurements from various substrate compositions in (G) to (J), showing that the
thin silicone adhesive layer in (G) offers conformal contact of a fabric-embedded electrode with the human skin. The contact quality of the dry substrate is similar to a
conventional electrode with conductive gels.
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note S1). The skin conformal contact can be determined by this
equation showing the interactions with the skin

Uconformal ¼ Ubending þ Usilicone þ Uskin þ Uadhesion

In this model, there are three key properties of a patch regarding
the elastomeric membrane’s thickness work of adhesion and
Young’s modulus. Our experimental study validates the analytical
study as summarized in Fig. 3 (G to M). Scanning electron micros-
copy (SEM) images in Fig. 3 (G to J) show examples of skin-elec-
trode contact quality, depending on the membrane material and
thickness. Among these cases, a soft membrane layer made of Sil-
bione (500 rpm; thickness: 250 μm; Fig. 3G) offers the best contact
quality, which is more advantageous than the one in Fig. 3H (thick-
ness: 56 μm) due to less amount of strain required for conformal
deformation. A graph in Fig. 3K shows an analytical calculation
of total interface energy with varying thicknesses of Silbione,
where more negative energy from thicker membranes indicates
higher conformability. On the other hand, two other examples of
Ecoflex 30 and poly(dimethylsiloxane) (PDMS) have poor contact
quality due to the high Young’s modulus and low work of adhesion.
A diagram in Fig. 3L summarizes the analytical study outcomes of
this study, showing the relationship between work of adhesion,
modulus, and resultant conformal skin contact. Figure S8 shows
the details of the experimental setup and measured values of the
work of adhesion for each membrane. Last, we measured skin-elec-
trode contact impedance data to compare the performance of the
wearable patches with different membrane substrates with the stan-
dard Ag/AgCl wet electrode. As summarized in Fig. 3M, the soft
adhesive membrane in Fig. 3G shows the best skin-contact
quality, such as the gel electrode.

Clinical study outcomes of sleep quality via comparison
with the gold-standard PSG
This study demonstrates the fabricated wearable sleep device’s per-
formance via side-to-side comparison with the gold-standard PSG
setup. A photo in Fig. 4A shows a participant in a sleep clinic
wearing two different systems; there are two unobtrusive wearable
patches on the forehead and chin, but the PSG setup requires more
than 15 wired bulky sensors and a separate data acquisition system.
The physiological signals in Fig. 4B, measured during sleep, com-
pares the data quality in detecting five sleep stages [awake, N1, N2,
N3, and rapid eye movement (REM)]. Each of the five sleep stages is
distinguished by its characteristic signals from measured EEG,
EOG, and EMG. The signal features are either continuous waves
(alpha, theta, delta, and EMG baseline) or instantaneous signals
(sleep spindle, K-complex, and REM), showing different ampli-
tudes, frequencies, morphologies, and durations. Sleep fragmenta-
tion in EEG and EOG channels is often observed during apnea
events, which is characterized by a series of temporary suppression
of power in the lower frequency range and bursts of power in the
middle to high-frequency range. PSG and wearable patch data
come from locations of F3-M2 channel and EEG1 channel, respec-
tively. The visualization and morphology analysis of these signals is
critical because the standard sleep analysis uses this method (31).
Overall, the characteristic signal morphology from the wearable
patch shows high similarity to that from PSG, and the patch’s
data can distinguish each sleep/wake stage. The average SNR
value of our system (22.77 dB) is comparable to that of PSG

(25.52 dB). The lower signal amplitude comes from the patch’s ref-
erence location on the nose, which is an acceptable alternative place
(39). Raw sleep data measured by the wearable patch is shown in fig.
S9 with all five channels during five sleep stages. Additional analysis
in Fig. 4 (C and D) compares spectrogram sleep data, showing
similar spectral profiles throughout the sleep. The spectral power
comparison over the four main EEG frequency bands (delta,
theta, alpha, and sigma) shows high correspondence with the
Pearson correlation value of 0.76 and P value of less than 10−10.
Details of the power values appear in fig. S10. The signal quality
was further validated by scoring the sleep data from both systems.
A sleep technician conducted this scoring with blind datasets to
avoid bias.

Summarized results in Fig. 4 (E and F) present two representa-
tive examples of the manual scoring analysis, which shows strong
agreement (87.50 and 88.19%) with a high Cohen’s kappa (κ)
value (0.80 and 0.82) between the two systems. The confusion
matrix in Fig. 4G summarizes the comparison results acquired
from eight subjects detecting five sleep stages. The overall accuracy
is 82.43% with Cohen’s kappa value of 0.74, which is very close to
the reported average interscorer reliability value of 82.0% with
Cohen’s kappa value of 0.76 (40). The wearable patch shows the
highest performance in scoring accuracy among wearable EEG
monitors (details in Table 1). The accuracy is calculated by follow-
ing this equation: Accuracy = (true positive + true negative)/(true
positive + false positive + true negative + false negative).

The sparse occurrence of N1 sleep stage and the ease of confu-
sion between W-N1 and N1-N2 transitions are key reasons for its
low agreement rate despite being generally well known with the
lowest scoring accuracy in both manual and digital analysis.
Cohen’s kappa coefficient for stage N1 is 0.23, which is not much
different from the reported values of 0.24 (41). Integration of planar
electrodes with soft materials has been widely adopted in multiple
studies for prolonged data acquisition, even under vigorous motion
or activity (24, 34, 35, 42). An example of data in fig. S11 presents 7-
day-long sleep results measured at home, demonstrating the consis-
tent data quality maintained throughout the prolonged measure-
ments. Overall, this study validates that the wearable patch can
measure physiological sleep data at the level of clinical standards.
Compared to the standard PSG system, our wearable patch has
unique advantages of portability, accessibility, and multiday use.
This device can be readily usable at home for detecting sleep data
for a week.

Measurements of sleep stages and detection of sleep apnea
from controls and patients
Figure 5A shows an EEG hypnogram and a spectrogram measured
from a healthy control using the wireless wearable patch. As clearly
categorized in the hypnogram, this subject shows stable and
uniform cycles of sleep stages without the indication of apnea. In
this analysis, we also used the multitaper spectrogram analysis for
quantifying various features of EEG and EOG in both time and fre-
quency domains, providing a more accurate analysis than the tradi-
tional single-taper spectrogram (43). A representative example in
fig. S12 shows how we used the multitaper method to analyze
sleep data. A set of data in Fig. 5B shows a close-up view of spectro-
grams and EEG and EOG that capture the progression from the
awake stage (W) to non-REM (N3) stage with corresponding char-
acteristic signal features. During stage W, eyes are closed, showing
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10-Hz alphawaves as indicated in the EEG spectrogram. During N1,
low-amplitude mixed-frequency (LAMF) signals are observed, and
its spectrogram shows weaker spectral power than other stages.
During N2, the EEG spectrogram captures the increase in low-fre-
quency delta wave activity, with frequent occurrence of microevents
such as K-complex, delta waves, and sleep spindle. During N3, the
EEG spectrogram depicts the continuous and uniform activity of
strong low-frequency delta (slow wave). Comparison of spectro-
grams of EOG and EEG further facilitates distinguishing sleep
stages. During stage N1, the spectrogram of EOG shows strong ac-
tivity in the lower frequency that corresponds to slow eye move-
ment. Besides N1, EOG spectrogram shows a mirror image of the
EEG spectrogram with weaker spectral power. Additional datasets
in Fig. 5C present other features. During stage R, the EEG spectro-
gram shows LAMF, similarly with N1, while EOG spectrogram cap-
tures strong and irregular activity in the lower frequency that

corresponds to REM. In contrast to the healthy participant, a
patient with severe sleep apnea shows completely different, highly
fragmented sleep cycles with frequent arousals (Fig. 5D) due to
apnea events, causing the deteriorated quality of sleep and tiredness.
The hypnogram in Fig. 5E captures the numerous arousals follow-
ing a series of apnea, and the corresponding spectrogram is highly
fragmented and dominated by alpha waves around the arousal
events. Spectrogram data in Fig. 5F further depicts the characteris-
tics of fragmented sleep signals. At the onset of each apnea event,
the low-frequency spectral power typical of non-REM sleep
becomes suppressed. A burst of spectral power throughout a wide
range of frequencies, from delta to sigma, occurs after the apnea
event. Overall, this study shows the capability of our data analysis
to distinguish the difference between healthy sleep and apnea.

Fig. 4. Clinical study outcomes of sleep quality via comparison with the gold-standard PSG. (A) Comparison of two different setups for sleep monitoring. The
wireless sleep patches show unobtrusive integration with the face, while the gold-standard PSG setup requires many wired sensors, external connectors, and bulky
electronic systems. Scale bar, 6 cm. (B) Side-to-side comparison of raw EEG data measured from both the PSG system (F3-M2 channel) and the forehead patch (EEG
1), capturing each of the five sleep stages (awake, N1, N2, N3, and REM). The wearable patch’s data are very similar to the one from the PSG. Comparison of spectrograms
from (C) the PSG (F3-M2 channel) and (D) the sleep patch (EEG 1 channel of forehead) simultaneously measured from the same subject. Hypnograms that compare sleep
data and manual scores were evaluated by a sleep specialist. In the comparison, black and red curves show the data from the PSG device and the wearable device,
respectively, for two subjects—one in (E) and the other in (F). (G) Confusion matrix showing a high agreement (82.43% and kappa value = 0.74) between two
devices. This comparison uses sleep data and manual scoring results from eight subjects who wear two devices simultaneously during sleep.
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Fig. 5. Measurements of sleep stages and detection of sleep apnea frompatients. (A) Hypnogram and spectrogram of a healthy subject showing a gradual change in
sleep/wake stages without much abrupt fluctuation throughout the sleep. (B and C) Detailed data showing hypnogram, EEG, and EOG spectrograms from the yellow and
green highlighted region in (A). The exploded views capture characteristic signals of each sleep/awake stage, including alpha, slow eye movement, REM, slow wave, and
more. (D) Hypnogram and spectrogrammeasured from a sleep apnea patient showing a frequency fluctuation and fragmentation of sleep throughout the sleep. (E and F)
Close-up view of the serial apnea events and frequent arousals with corresponding hypnogram and spectrogram. These detailed data show abrupt awakening after a
series of apnea events and characteristic signals of sleep fragmentation follow suiting each apnea event.
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Automated sleep scoring and quantitative diagnosis of
sleep apnea using CNN
As discussed earlier, the standard method in sleep analysis is to use
visual data observation and manual scoring by technicians, causing
delays, additional costs, and human errors (5, 44, 45). Thus, we de-
veloped an automated sleep classification and scoring methods
using deep learning CNN in this work. Figure 6A depicts a flow
from data acquisition to training, processing, and prediction. The

illustration in Fig. 6B shows the deep learning architecture devel-
oped in this work that uses sleep data measured by the wearable
patch for automated sleep scoring. Details of the CNN algorithm,
data processing, and classification processes for sleep stage detec-
tion and sleep apnea detection appear in figs. S13 and S14, tables
S1 and S2, and Methods. Graphs in Fig. 6 (C and D) show two rep-
resentative results of the automated sleep scoring. When the auto-
mated scoring data from the wearable patch is compared to that

Fig. 6. Automated sleep scoring and quantitative diagnosis of sleep apnea using CNN. (A) Flow chart illustration for an overview of the data processing andmachine
learning implementation for sleep scoring and apnea event detection. (B) Input data structure and machine learning architectures for automated sleep stage scoring
(Conv, convolution; F.C., fully connected layers; BN, batch normalization). (C and D) Hypnograms comparing manual scorings done by a sleep technologist with the PSG
signals (black) and CNN-based automated sleep scoring done with the devices’ signals (blue) over two subjects’ sleep measurements. (E) Confusion matrix showing high
agreement between the manual scorings done by a sleep technologist with PSG signals and automated sleep scoring with the devices’ signals over all the eight subjects’
sleep measurements. (F) Input data structure and proposed machine learning architectures for apnea event detection (GRU, gated recurrent unit). (G) Confusion matrix
showing high accuracy of apnea event detection with our system in comparison with the manual diagnosis by a sleep technologist with PSG.
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from the PSG scoring case, there is strong agreement between the
two methods, with an accuracy of 88.41 and 88.17% and Cohen’s
kappa values of 0.81 and 0.82. The correlation outcomes of sleep
scoring have similar results to the manual scoring datasets from
Fig. 4. The confusionmatrix in Fig. 6E summarizes the performance
of our CNN algorithm compared to manual scoring with PSG. The
overall agreement and Cohen’s kappa between the automated and
manual scoring (83.89% and 0.76) showed a better performance
than the reported average interscorer reliability (82.0%) (40). A
set of diagrams in Fig. 6F depicts the input data and the CNN ar-
chitecture for sleep apnea detection. In the analysis of the confusion
matrix (Fig. 6G), our system classified 4760 epochs as no event and
196 epochs as apnea. Among them, a sleep technician diagnosed
4204 epochs as normal and 556 epochs as apnea in the PSG data.
Of the 196 epochs, 183 epochs were diagnosed as apnea, while 13
epochs (6.63%) were diagnosed as normal. Thus, with eight pa-
tients, the system’s performance shows a high accuracy of 88.52%,
demonstrating the first study of detecting sleep disorders with the
wearable machine learning system. Collectively, this study shows the
potential of our system to offer real-time, automated, and accurate
detection of sleep stages and disorders, which will advance portable
sleep monitoring and home health care.

DISCUSSION
Collectively, this paper reports the development of a wearable bio-
medical system that offers at-homewireless sleepmonitoring for the
clinical assessment of sleep quality and sleep apnea. This work illus-
trates the first demonstration of automated detection of sleep disor-
ders using a multisensor integrated patch and deep learning
algorithm. The wearable platform shows the potential for conve-
nient, reliable, and accurate sleep monitoring and analysis with en-
hanced accessibility and effectiveness. Our system provides a
multimodal physiological measurement with seamless and unob-
trusive integration with skin. A combination of materials and fab-
rication processes enables reliable integration and usability of the
system while offering scalable manufacturing of a large-area
system. A pilot clinical study compared to standard PSG demon-
strates its high signal quality and visual and automated sleep
scoring feasibility. Training on existing datasets reflects the
device’s potential to detect obstructive sleep apnea–related arousals.
CNN-based data analysis methods for automated sleep scoring and
apnea detection could further validate our system’s applicability
with high performance. Future studies will focus on improving a
wearable electrode’s breathability and reusability. Developing a re-
placeable adhesive layer for the electrode will lower the cost while
facilitating long-term use of the wearable sleep monitor. In addi-
tion, this system will integrate other sleep sensors for measuring
blood oxygen saturation, carbon dioxide, and motions, improving
the accuracy and effectiveness of apnea detection. Last, we plan to
conduct a large-scale clinical study with patients to validate the ef-
ficacy of at-home sleep monitoring and automated disease
diagnosis.

METHODS
Fabric substrate fabrication
Parts A and B of Silbione (A-4717, Factor II Inc.) were mixed with
1:1 weight ratio for 5 min. To make a uniform thickness of the

adhesion layer, mixed uncured Silbione is poured on a PTFE
sheet and spin-coated at 500 rpm for 1 min. Brown fabric medical
tape (9907T, 3M) was placed on the uncured Silbione surface and
followed by a curing process in an oven at 65°C for 30 min. After
curing of Silbione, PTFE sheet was detached.

Nanomembrane electrode fabrication
Gold electrodes were fabricated by electron beam (E-beam) evapo-
ration and facile laser cutting. PDMS (Sylgard 184, Dow) was used
for the bottom layer of electrode fabrication because it offers both
proper adhesion and easy release feature for this process. A polymer
film (18-0.3F, CS Hyde) was laminated on the cured PDMS surface.
An E-beam deposition process was used to deposit gold on the film.
A precise laser-cutting process was applied to the film to get a
stretchable serpentine pattern of the electrode. Last, nonfunctional
materials besides the electrode patterns were removed by delaminat-
ing from PDMS surface.

Stretchable connector fabrication
A thin copper foil with a laser cutting process enabled scalable elec-
trical connector fabrication. PDMS was coated and cured on a glass
plate (8 inches by 10 inches). A 6-μm-thick copper foil (BR0214,
MSE Supplies LLC) was laminated on the cured PDMS surface. A
laser-cutting process was applied to the copper foil to get a stretch-
able serpentine pattern of the electrical connector. Then, the rest of
the Cu foil beside the pattern was removed and delaminated from
the PDMS surface.

Fabrication of circuits and encapsulation
Our circuits used a flexible printed circuit board (PCB) board. All
electronic components were mounted on the board with a reflow
solder process (fig. S3). Tables S4 and S5 contain all the detailed in-
formation about the electronic components used in the device. To
enhance the mechanical flexibility of the circuit, unnecessary areas
were removed with laser cutting. For power supply and manage-
ment, we used a lithium polymer battery assembly with a slide
switch and a circular magnetic recharging port. A low-modulus
elastomer (Ecoflex GEL, Smooth-On) is placed underneath the in-
tegrated circuit as a strain-isolation layer. The overall electronic
system was encapsulated and soft-packaged with an additional elas-
tomer (Ecoflex 00-30, Smooth-On), leaving only the switch and
charging port exposed.

Device assembly
The copper connector and gold electrode were transferred to the
soft adhesive side of the fabric with water-soluble tape (ASW-35/
R-9, Aquasol Corporation). The localization and alignment of the
electrodes can be accurately done with a manual process because of
their small size. Once all electrodes are properly placed with the
copper connector, the water-soluble tapes on top of all the elec-
trodes are washed off together under flowing water. Silver paint
was applied between the copper connector pad and the gold elec-
trode pad. Silver paint offers robust mechanical/electrical connec-
tions beyond the yield point of the electrode system. The applied
silver paint was dried in an oven at 65°C for 30 min. The copper
connector and the silver paint were encapsulated with Ecoflex,
which was cured in an oven at 65°C for 180 min. For insulation
of the copper connector, elastomer was used rather than polyimide
(PI) due to its softer mechanical property and easier manufacturing
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process without the need for a high-temperature process for PI
curing, which can cause severe oxidation of copper and thermal
damage to the rest of the system. Because of the small area of the
Ecoflex-coated region and its surrounding Silbione layers, the Cu
interconnector with the Ecoflex encapsulant layer ensures secure
contact with the skin, minimizing motion artifacts and maintaining
signal quality for the connectors. Electrode system mounted fabric
was patterned by laser-cutting process. The soft-packaged electron-
ic system was attached to the fabric side of the fabric substrate by
adding and curing a thin silicone layer.

Breathability is one of the important aspects of the wearable
system for prolonged skin-interfaced application. We validated
this property by measuring a moisture vapor transmission rate
among the commonly used silicone elastomers (fig. S15). The mea-
sured breathability of the fabric substrate is about two times higher
than PDMS with the same thickness and a quarter of the commonly
used medical dressing (Tegaderm, 3M Medical). Accumulation of
sweat was often observed during our measurements, but it was
not critical to the point that it would cause the system’s failure or
measurement. In addition, the fabricated soft patch with gold elec-
trodes shows no skin irritation or other side effects. Figure S16
shows comparison test results wearing the soft patches and com-
mercial get electrodes for 3 days.

Computational modeling
Mechanical deformations and strain distributions associated with
the system on human skin were characterized using three-dimen-
sional (3D) FEA. Eight-node 3D solid elements were used to simu-
late the fabric and Silbione, and four-node shell elements with a
two-layer (gold/PI) for the electrode and copper/PI for the connec-
tor) were adopted, with optimized meshes to assure computational
precision. Displacement-type boundary conditions were assigned to
the fabric’s side surfaces where varying amounts of stretching were
applied. Elastic stretchability is defined as the point at which the
maximum strain in the metal layer exceeds the yield strain (0.30%
for copper and 1% for gold) throughout at least half of the width of
any segment. The Young’s modulus (E) and Poisson’s ratio (v) of
the materials used in the simulations include Eau = 78 GPa and
vau = 0.44 for gold, Epi = 2.5 GPa and vpi = 0.34 for polyimide,
Ecu = 119 GPa and vcu = 0.34 for copper, under fabric (Ef = 1.28
MPa, vf = 0.184) with Silbione (Esi = 5 kPa, vsi = 0.48).

Experimental study of mechanical reliability
For the mechanical characterization of fabric’s elasticity, the fabric
(30 mm by 80 mm) was mounted on a motorized testing machine
(ESM303, M5-5, Mark-10). The fabric was gently stretched at 50
mm/min up to its failure point. The tests were conducted in three
directions of fabric (roll direction, 45° direction, and vertical direc-
tion). Young’s modulus and Poisson’s ratio were calculated using
the average data of three directions before 100% stretching. For
the cyclic test and failure test of electrode system, an electrode
system that consisted of a gold electrode and copper connector
was prepared on a fabric substrate. Silver paint was applied to
make amechanical/electrical connection between the gold electrode
and the copper connector. Copper wires (100 μm in diameter) were
attached to both edge pads of the Cu connector and the designed
pad of the gold electrode to measure their electrical resistance
change. Electrical resistance is measured by an inductance-capaci-
tance-resistance (LCR) meter (model 891, BK Precision). For the

cyclic stretching test, the electrode system was repeatedly stretched
and relaxed at 150 mm/min speed for 1000 cycles. The failure test
was conducted with a speed stretching of 50 mm/min on the system
up to its electrical failure.

Imaging-based study of conformal contact
For Silbione-fabric substrate thickness measurement, to measure
and compare the thickness of the Silbione-fabric substrate depend-
ing on coating condition, Silbione was spin-coated with various
coating speeds (500, 1000, 1500, 2000, 2500, and 3000 rpm for 1
min). Each sample was cut into 5 mm–by–10 mm size by razor
blade to measure its cross section. Optical image analysis was per-
formed using 3D Surface Profiler (VK-X3000, Keyence). For con-
formal contact visualization and comparison, to compare the level
of conformal contact visually, a Thermo Axia Variable Pressure
SEM was used to take images of the microstructure of the skin-at-
tached adhesion layer. As the compared, adhesion layers, thick Sil-
bione (500 rpm spin-coated), thin Silbione (3000 rpm, spin-coated),
Ecoflex 00-30, and PDMS are cured on the fabric substrate and
placed on human skin replica, which is fabricated by a casting
process (EpoxAcast 670 HT, Smooth-On).

Study of a device’s peeling strength and reusability
For peeling strength measurement and calculation, test adhesive
pads had various thicknesses (56, 73, 99, 146, 172, and 250 μm)
and were prepared in 30 mm–by–80 mm size. For the peeling
strength analysis of the fabric substrate, the fabric substrate was at-
tached to the skin and peeled in the vertical direction with a motor-
ized force tester (ESM303, M5-5, Mark-10). The motorized force
tester recorded adhesion force data during the test. The adhesive
pad was peeled mechanically from the skin at a speed of 50 mm/
min. The average peel strength (Newton per millimeter) was calcu-
lated by measuring the average load (Newton) of the peel test and
dividing it by the width (millimeter) of the bonded pad. Each test
was repeated three times to evaluate the average peeling strength.
For experimental setup of reusability and method of soap
washing, the reusability of the Silbione adhesive pad with the thick-
ness of 250 μm was evaluated by proper cleansing protocols. These
test samples were attached to the forehead for 7 hours during sleep
and were tested repeatedly for 7 days. For preparing the washed
sample, 50 ml of warm water (35°C) was mixed with 5 ml of dish
detergent, and the swab was dipped into the solution to soak the
prepared detergent solution. To remove residue from the adhesive
after each attachment to the forehead, the washed sample was gently
brushed with a wet swab for 1 min. Two additional group experi-
ments (unwashed pad after each attach/detach cycle, newly fabricat-
ed adhesion pad) were conducted to evaluate the efficacy of the
cleansing method. Each sample’s peeling strength for each day
was measured by a motorized force tester (ESM303, M5-5, Mark-
10). Samples were peeled from the skin at 50 mm/min speed. The
peel strength (Newton per millimeter) was calculated by measuring
the load (Newton) of the peel test and dividing it by the width (mil-
limeter) of the bonded pad.

Measurement of work of adhesion
The test consisted of indenting an adhesive layer (Silbione, Ecoflex
00-30, and PDMS) mounted circular polished steel probe into a pig
skin that was firmly bonded to a larger circular steel substrate. The
probe with the adhesive layer was brought into contact with the skin
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for a minute, and the probe was then retracted at a given speed. The
diameter of the probe was 20 mm. The speed of the probe was 0.4 to
40 mm/min. The normal direction peeling force and displacement
of the probe were measured by a motorized force tester (stage:
ESM303 and gauge: M5-5, MARK-10). The stress-strain curves
were plotted from the measured data, and debonding energy of
each condition was calculated through it. The work of adhesion of
each material was derived by linear fitting of the plot.

Analysis of skin-electrode contact impedance and SNR
To compare the skin impedance of the electrode with different ad-
hesion layers, gold electrode was placed on various substrates (500
rpm, spin-coated Silbione; 3000 rpm, spin-coated Silbione; Ecoflex
00-30, PDMS). In addition, the control group experiment (gel elec-
trode) was conducted to compare electrode-skin contact imped-
ance. The test was conducted on the forearm area, and the
electrode attached area was properly cleaned with skin preparation
gel (NuPrep Skin Prep Gel, Weaver and Company). Electrode-skin
contact impedance was measured by a skin impedance meter
(model 1089NP Checktrode, UFI), which was connected to two
electrodes on skin. Normalized value could be achieved by calculat-
ing the impedance density of each sample. The effective area of the
serpentine gold electrode and gel electrode was measured by 3D
Surface Profiler (VK-X3000, Keyence). For the SNR calculation of
the sleep data, the noise was assumed to be the data measured before
eye closure without any activity, and its amplitude was calculated.
For SNR calculation for reusability analysis in Fig. 3F, amplitudes
of 100-s-long delta wave during the first N3 stages were calculated
from each measurement. The signal amplitudes were averaged for
each day of the two separate 7-day measurements. For SNR compar-
ison in Fig. 4B, amplitudes of shown signals at each sleep stage were
calculated and averaged. The SNR value was calculated with the fol-

lowing equation: SNRdB ¼
Asignal
Anoise

� �2
� �

.

Human subject study
For the clinical study with sleep disorder patients, informed consent
was received with a signed consent form before the sleep measure-
ment at the Emory Sleep Center. The study followed the approved
protocol from Emory University Institutional Review Board
(#00070097). Once the standard PSG setup was placed on the
patient by a sleep study technician, our devices were placed on
the patient’s face so as not to disrupt or overlap with the PSG set-
tings. The sampling rate of PSG was 200 Hz, and the sampling rate
of our system was 250 Hz. Data from these patients were used to
compare sleep-wake staging between gold-standard PSG and our
device using both traditional visual scoring and automated analyses.
Healthy control participants provided informed consent with a
signed consent form before the at-home study. The experimental
protocol was approved by the Georgia Tech Institutional Review
Board (#20211). Instructions were given to the subjects regarding
how to use the devices by themselves, and the devices were delivered
to the subjects to take sleep measurements at home.

Manual scoring of sleep stages and comparison with PSG
A sleep technologist manually scored the data from the eight clinical
study patients measured with both PSG and our system according to
the AASM guideline. The patient information data were blinded to
the sleep technologist. A device malfunction occurred during the

measurement of four patients, and the epochs measured during
the malfunction were excluded from the analysis. A total of 2228
epochs were excluded, and 4970 epochs were used for the compar-
ison analysis. The scoring results of the 4970 epochs measured with
both PSG and our system from the eight patients were used to cal-
culate the agreement and Cohen’s kappa coefficient.

Data processing
Because of the processing load and for the maximized portability
and usability of the wearable system, the signal acquisition and pro-
cessing scheme is composed of three different electronic devices: (i)
wearable facial patches, (ii) portable device (e.g., smartphone, tablet,
etc.), and (iii) personal computer (PC). First, the wearable system
collects signals from the electrodes on the skin and transmits
them to the portable device via Bluetooth for data storage. The por-
table device simultaneously collects the signals from both forehead
and chin devices via BLE. Then, the stored data are transferred to a
PC for the complicated signal processing and analysis with CNN,
which requires high processing power. All data processing was
done with MATLAB. The data measured with our system were
first processed by bandpass filtered (from 0.3 to 30 Hz) and notch
filtered (from 59 to 61 Hz) to remove various noises, such as drift-
ing, power line noise, background noise, and so on. The cutoff fre-
quencies of the bandpass filter recommended by the AASM
guideline were 0.3 to 35 Hz for EEG and EOG and 10 to 100 Hz
for EMG. Stop band frequencies of the notch filter were set to 59
to 61 Hz to remove the power line noise with 60 Hz. The filtered
data were used to generate a multitaper spectrogram. The recom-
mended parameters from Prerau et al. (43) were adopted. The fre-
quency range of the spectrogram was set to 0 to 20 Hz. The time-
half-bandwidth product was set to 5, and the number of tapers was
9. The window size was set to 5 s, and the step size was 1 s.

Classification of sleep stages and apnea
The details of machine learning layer information for sleep stage
classification appear in tables S1 and S2. Segmented images of the
multitaper spectrogram were used for training and evaluation of the
CNN-based sleep stage classification and apnea event detection.
Sleep data from 32 healthy participants with 15,590 epochs were
used to train the CNN-based sleep stage classification. Of the
15,590 epochs, 1883 were W, 685 were N1, 5858 were N2, 4404
were N3, and 2760 were R. Sleep data from 40 apnea patients
with 35,927 epochs obtained from Institute of Systems and Robot-
ics, University of Coimbra (ISRUC) public PSG dataset were used to
train the CNN-based apnea event detection. Of 35,927 epochs, 829
epochs contained apnea events, and 35,098 epochs were labeled as
normal. Sleep data from eight patients with 4970 epochs from our
clinical study were used as the test dataset to evaluate the perfor-
mance of the CNN-based classification models. The labels of
sleep stage and apnea events were made on each epoch. For sleep
stage label, of the 4970 epochs, 1141 were W, 343 were N1, 2423
were N2, 495 were N3, and 568 were R. For apnea event label, of
the 4970 epochs, 196 epochs contained apnea events, and 4774
epochs were labeled as normal. CNN architectures were created ac-
cording to the form of input data, image-based multitaper spectro-
grams, drawing influence from earlier models (45). The inputs of
our CNN were epoch-by-epoch 30-s-long spectrogram images
(128 × 128 pixels) of four channels (two EEG and two EOG chan-
nels) combined in a square image (256 × 256 pixels). The
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spectrogram image was then resized into 64 × 64 and converted to
values between 0 and 1 using normalization. Because the color-
image consists of three-color layers (red, green, and blue), every
input matrix dimension was a 3D matrix (64 × 64 × 3). The nonlin-
ear activation functions used are the leaky rectified linear unit (leaky
ReLU). ADAM (learning rate = 0.002) was used for the optimization
of the CNN architecture, and the error was calculated using the
cross-entropy loss function. The batch size was set to 16, and the
dropout deactivation rate was set to 0.5. Early stopping was used
to prevent overfitting by randomly eliminating 20% of the data
from the training set and using it as a validation set at the start of
the optimization phase. When the validation loss stopped improv-
ing, learning rate annealing was performed with a factor of 5. The
training was terminated when two successive decays occurred with
no network performance improvement on the validation set, and
hyperparameters were optimized by random selection method.
Resized data were entered into CNN, featuring three layers of 2D
convolutions with filters of size 112, 32, and 48, respectively, and
kernel size 3 × 3, 3 × 3, and 5 × 5, respectively. A single convolu-
tional cell (Conv_N) consisted of a convolutional layer, one layer of
batch normalization, one layer of maximum pooling step with a
filter size of 2, and one layer of Leaky ReLu function. Last, the
data were flattened and followed by two fully connected layers
and passed through a softmax layer and lastly outputted the predict-
ed class (one of the five sleep stages). Details of the structure and
parameters of the CNN for sleep stage classification are further
summarized in fig. S13 and table S3. For apnea event, an architec-
ture combining CNN and gated recurrent unit (GRU) was created.
The inputs of our architecture were epoch-by-epoch 60-s-long spec-
trogram images (128 × 128 pixels) of four channels (two EEG and
two EOG) combined in a square image (256 × 256 pixels). For the
60 s of data included in each spectrogram, 30 s of corresponding
epoch, and the next 30 s of the epoch that follows are combined
to better capture the sleep fragmentation and enhance the detection
performance. The spectrogram image was then resized into 224 ×
224 and converted to values between 0 and 1 using normalization.
Because the color image consists of three-color layers (red, green,
and blue), every input matrix became a 3D matrix (224 × 224 ×
3). Resized data were entered into a CNN, featuring two layers of
2D convolutions with filters of size 64 and kernel size 12 × 12. A
Conv_N consisted of a convolutional layer, one layer of batch nor-
malization, one layer of ReLU, one layer of max pooling, and a
dropout layer. The filter sizes of two max pooling layers were 8
and 4, respectively, and the dropout deactivation rates of two
dropout layers were set to 0.5. The data were flattened and followed
by one GRU layer (number of hidden units = 9) and one fully con-
nected layer and passed through a softmax layer and lastly outputted
the predicted class (either “no event” or “apnea event”). Detailed
information of the CNN + GRU architecture was depicted in the
fig. S14. For the training of the CNN + GRU architecture, the
cross-entropy loss was used as a loss function, and it was optimized
using the ADAM optimizer (learning rate = 0.001). Early stopping
was used to prevent overfitting by randomly eliminating 20% of the
data from the training set and using it as a validation set at the start
of the optimization phase. The training was terminated when 10
successive decays occurred with no network performance improve-
ment on the validation set and hyperparameters were optimized by
random selection method.
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